Structure, mechanism and ensemble formation of the alkylhydroperoxide reductase subunits AhpC and AhpF from Escherichia coli.

نویسندگان

  • Phat Vinh Dip
  • Neelagandan Kamariah
  • Malathy Sony Subramanian Manimekalai
  • Wilson Nartey
  • Asha Manikkoth Balakrishna
  • Frank Eisenhaber
  • Birgit Eisenhaber
  • Gerhard Grüber
چکیده

Hydroperoxides are reactive oxygen species (ROS) that are toxic to all cells and must be converted into the corresponding alcohols to alleviate oxidative stress. In Escherichia coli, the enzyme primarily responsible for this reaction is alkylhydroperoxide reductase (AhpR). Here, the crystal structures of both of the subunits of EcAhpR, EcAhpF (57 kDa) and EcAhpC (21 kDa), have been solved. The EcAhpF structures (2.0 and 2.65 Å resolution) reveal an open and elongated conformation, while that of EcAhpC (3.3 Å resolution) forms a decameric ring. Solution X-ray scattering analysis of EcAhpF unravels the flexibility of its N-terminal domain, and its binding to EcAhpC was demonstrated by isothermal titration calorimetry. These studies suggest a novel overall mechanistic model of AhpR as a hydroperoxide scavenger, in which the dimeric, extended AhpF prefers complex formation with the AhpC ring to accelerate the catalytic activity and thus to increase the chance of rescuing the cell from ROS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 1. Purification and enzymatic activities of overexpressed AhpF and AhpC proteins.

The two components, AhpF and AhpC, of the Salmonella typhimurium alkyl hydroperoxide reductase enzyme system have been overexpressed and purified from Escherichia coli for investigations of their catalytic properties. Recombinant proteins were isolated in high yield (25-33 mg per liter of bacterial culture) and were shown to impart a high degree of protection against killing by cumene hydropero...

متن کامل

Structure of intact AhpF reveals a mirrored thioredoxin-like active site and implies large domain rotations during catalysis.

AhpF, a homodimer of 57 kDa subunits, is a flavoenzyme which catalyzes the NADH-dependent reduction of redox-active disulfide bonds in the peroxidase AhpC, a member of the recently identified peroxiredoxin class of antioxidant enzymes. The structure of AhpF from Salmonella typhimurium at 2.0 A resolution, determined using multiwavelength anomalous dispersion, shows that the C-terminal portion o...

متن کامل

Attachment of the N-terminal domain of Salmonella typhimurium AhpF to Escherichia coli thioredoxin reductase confers AhpC reductase activity but does not affect thioredoxin reductase activity.

AhpF of Salmonella typhimurium, the flavoprotein reductase required for catalytic turnover of AhpC with hydroperoxide substrates in the alkyl hydroperoxide reductase system, is a 57 kDa protein with homology to thioredoxin reductase (TrR) from Escherichia coli. Like TrR, AhpF employs tightly bound FAD and redox-active disulfide center(s) in catalyzing electron transfer from reduced pyridine nuc...

متن کامل

AhpF can be dissected into two functional units: tandem repeats of two thioredoxin-like folds in the N-terminus mediate electron transfer from the thioredoxin reductase-like C-terminus to AhpC.

AhpF, the flavin-containing component of the Salmonella typhimurium alkyl hydroperoxide reductase system, catalyzes the NADH-dependent reduction of an active-site disulfide bond in the other component, AhpC, which in turn reduces hydroperoxide substrates. The amino acid sequence of the C-terminus of AhpF is 35% identical to that of thioredoxin reductase (TrR) from Escherichia coli. AhpF contain...

متن کامل

Essential thioredoxin-dependent peroxiredoxin system from Helicobacter pylori: genetic and kinetic characterization.

Helicobacter pylori, an oxygen-sensitive microaerophile, contains an alkyl hydroperoxide reductase homologue (AhpC, HP1563) that is more closely related to 2-Cys peroxiredoxins of higher organisms than to most other eubacterial AhpC proteins. Allelic replacement mutagenesis revealed ahpC to be essential, suggesting a critical role for AhpC in defending H. pylori against oxygen toxicity. Charact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta crystallographica. Section D, Biological crystallography

دوره 70 Pt 11  شماره 

صفحات  -

تاریخ انتشار 2014